题目内容

【题目】为了解人们对“月在北京召开的第十三届全国人民代表大会第二次会议和政协第十三届全国委员会第二次会议”的关注度,某部门从年龄在岁到岁的人群中随机调查了人,并得到如图所示的年龄频率分布直方图,在这人中关注度非常髙的人数与年龄的统计结果如表所示:

年龄

关注度非常高的人数

1)由频率分布直方图,估计这人年龄的中位数和平均数;

2)根据以上统计数据填写下面的列联表,据此表,能否在犯错误的概率不超过的前提下,认为以岁为分界点的不同人群对“两会”的关注度存在差异?

3)按照分层抽样的方法从年龄在岁以下的人中任选六人,再从六人中随机选两人,求两人中恰有一人年龄在岁以下的概率是多少.

岁以下

岁以上

总计

非常高

一般

总计

参考数据:

【答案】1)中位数为(岁),平均数为(岁);(2)不能.3.

【解析】

1)根据频率分布直方图中位数两侧频率之和均为可得出中位数,将频率分布直方图中每个矩形底边中点值乘以矩形的面积,再将各乘积相加可得出平均数;

2)根据题中信息完善列联表,并计算出的观测值,并与进行大小比较,利用临界值表可对题中结论的正误进行判断;

3)利用利用分层抽样的特点计算出所选的人中年龄在岁以下和年龄在岁到岁间的人数,并对这些人进行编号,列出所有的基本事件,并确定基本事件的总数,然后确定事件“从六人中随机选两人,求两人中恰有一人年龄在岁以下”所包含的基本事件数,利用古典概型的概率公式可得出所求事件的概率.

1)由频率分布直方图可得,两侧的频率之和均为

所以估计这人年龄的中位数为(岁).

平均数为(岁);

2)由频率分布直方图可知,岁以下共有人,岁以上共有人,列联表如下:

岁以下

岁以上

总计

非常高

一般

总计

不能在犯错误的概率不超过的前提下,认为以岁为分界点的不同人群对“两会”的关注度存在差异;

3)年龄在岁以下的人数为人,

年龄在岁到岁之间的人数为人,

按分层抽样的方法在这人中任选人,其中年龄在岁以下的有4人,设为.年龄在岁到岁之间的有人,

设为,从这人中随机选两人,有,共种选法,

而恰有一人年龄在岁以下的选法有:,共种,

因此,“从六人中随机选两人,求两人中恰有一人年龄在岁以下”的概率是.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网