题目内容

【题目】已知函数的图象与过原点的直线恰有四个交点,设四个交点中横坐标最大值为,则( )

A. B. C. 0 D. 2

【答案】A

【解析】分析:依题意,过原点的直线与函数y=|cosx|(x≥0)在区间(,2π)内的图象相切,利用导数知识可求得切线方程,利用直线过原点,可求得θ=-,代入所求关系式即可求得答案.

详解::∵函数f(x)=|cosx|(x≥0)的图象与过原点的直线恰有四个交点,∴直线与函数y=|cosx|(x≥0)在区间(,2π)内的图象相切,在区间(,2π)上,y的解析式为y=cosx,故由题意切点坐标为(θ,cosθ),∴切线斜率k=y′=-sinx|x=θ=-sinθ,∴由点斜式得切线方程为:y-cosθ=-sinθ(x-θ),即 y=-sinθx+θsinθ+cosθ,∵直线过原点,∴θsinθ+cosθ=0,得θ=-

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网