题目内容

10.函数f(x)=ax-1+3(a>0,且a≠1)的图象过一个定点P,且点P在直线mx+ny-1=0(m>0,n>0)上,则$\frac{1}{m}$+$\frac{4}{n}$的最小值是(  )
A.12B.13C.24D.25

分析 函数f(x)=ax-1+3(a>0,且a≠1)的图象过一个定点P(1,4),可得m+4n=1.再利用“乘1法”与基本不等式的性质即可得出.

解答 解:函数f(x)=ax-1+3(a>0,且a≠1)的图象过一个定点P(1,4),
∵点P在直线mx+ny-1=0(m>0,n>0)上,
∴m+4n=1.
则$\frac{1}{m}$+$\frac{4}{n}$=(m+4n)$(\frac{1}{m}+\frac{4}{n})$=17+$\frac{4n}{m}+\frac{4m}{n}$≥17+4×2$\sqrt{\frac{n}{m}×\frac{m}{n}}$=25,当且仅当m=n=$\frac{1}{5}$时取等号.
故选:D.

点评 本题考查了指数函数的性质、“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网