题目内容

9.数列{an}中,若a1=$\frac{1}{2}$,an=$\frac{1}{1-{a}_{n-1}}$(n≥2,n∈N*),则a2011的值为(  )
A.-1B.$\frac{1}{2}$C.1D.2

分析 由已知分别求出数列的前几项,得到数列{an}是以3为周期的周期数列,则答案可求.

解答 解:∵a1=$\frac{1}{2}$,an=$\frac{1}{1-{a}_{n-1}}$(n≥2,n∈N*),
∴${a}_{2}=\frac{1}{1-{a}_{1}}=\frac{1}{1-\frac{1}{2}}=2$,${a}_{3}=\frac{1}{1-{a}_{2}}=\frac{1}{1-2}=-1$,
${a}_{4}=\frac{1}{1-{a}_{3}}=\frac{1}{1-(-1)}=\frac{1}{2}$,

由上可知,数列{an}是以3为周期的周期数列,
∴${a}_{2011}={a}_{3×670+1}={a}_{1}=\frac{1}{2}$.
故选:B.

点评 本题考查数列递推式,关键是对数列周期的发现,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网