题目内容
【题目】为调查某地区被隔离者是否需要社区非医护人员提供帮助,用简单随机抽样方法从该地区调查了500位被隔离者,结果如下:
性别 是否需要 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(1)估计该地区被隔离者中,需要社区非医护人员提供帮助的被隔离者的比例;
(2)能否有99%的把握认为该地区的被隔离者是否需要社区非医护人员提供帮助与性别有关?
【答案】(1);(2)有99%的把握认为该地区的被隔离者是否需要帮助与性别有关.
【解析】
(1)计算出样本中需要提供帮助的被隔离者所占比,由此估计该地区被隔离者所占比例;
(2)根据列联表的数据,计算出随机变量的观测值,比0.010所对应的值6.635大,得出结论“有99%的把握认为该地区的被隔离者是否需要帮助与性别有关”.
解:(1)∵调查的500位被隔离者中有位
需要社区非医护人员提供帮助,
∴该地区被隔离者中需要帮助的被隔离者的比例的估算值为
;
(2)根据列联表所给的数据,代入随机变量的观测值公式,
.
∵,
∴有99%的把握认为该地区的被隔离者是否需要帮助与性别有关.
【题目】在我国,大学生就业压力日益严峻,伴随着政府政策引导与社会观念的转变,大学生创业意识,就业方向也悄然发生转变某大学生在国家提供的税收,担保贷款等很多方面的政策扶持下选择加盟某专营店自主
创业,该专营店统计了近五年来创收利润数(单位:万元)与时间(单位:年)的数据,列表如下:
1 | 2 | 3 | 4 | 5 | |
2.4 | 2.7 | 4.1 | 6.4 | 7.9 |
(Ⅰ)依据表中给出的数据,是否可用线性回归模型拟合与的关系,请计算相关系数并加以说明(计算结果精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合):
(Ⅱ)该专营店为吸引顾客,特推出两种促销方案.
方案一:每满500元可减50元;
方案二:每满500元可抽奖一次,每次中奖的概率都为,中奖就可以获得100元现金奖励,假设顾客每次抽奖的结果相互独立.
①某位顾客购买了1050元的产品,该顾客选择参加两次抽奖,求该顾客获得100元现金奖励的概率.
②某位顾客购买了1500元的产品,作为专营店老板,是希望该顾客直接选择返回150元现金,还是选择参加三次抽奖?说明理由
附:相关系数公式
参考数据:.