题目内容
椭圆的离心率,.
(1)求椭圆C的方程;
(2)如图,是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交轴于点N,直线AD交BP于点M。设BP的斜率为,MN的斜率为.证明:为定值。
(1)求椭圆C的方程;
(2)如图,是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交轴于点N,直线AD交BP于点M。设BP的斜率为,MN的斜率为.证明:为定值。
(1) (2)见解析
(1),
由(1)知A(-2,0),B(2,0),D(0,1),则直线AD方程为:;直线BP方程:,联立得直线BP和椭圆联立方程组解得P点坐标为,因为D,N(x,0),P三点共线,所以有:
由(1)知A(-2,0),B(2,0),D(0,1),则直线AD方程为:;直线BP方程:,联立得直线BP和椭圆联立方程组解得P点坐标为,因为D,N(x,0),P三点共线,所以有:
练习册系列答案
相关题目