题目内容
【题目】已知z是复数,z+2i, 均为实数(i为虚数单位),且复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.
【答案】解:设复数z=m+ni(m,n∈R), 由题意得z+2i=m+ni+2i=m+(n+2)i∈R,
∴n+2=0,即n=﹣2.
又∵ ,
∴2n+m=0,即m=﹣2n=4.∴z=4﹣2i.
∵(z+ai)2=(4﹣2i+ai)2=[4+(a﹣2)i]2=16﹣(a﹣2)2+8(a﹣2)i
对应的点在复平面的第一象限,横标和纵标都大于0,
∴
解得a的取值范围为2<a<6
【解析】设出复数的代数形式,整理出代数形式的结果,根据两个都是实数虚部都等于0,得到复数的代数形式.代入复数(z+ai)2 , 利用复数的加减和乘方运算,写出代数的标准形式,根据复数对应的点在第一象限,写出关于实部大于0和虚部大于0,解不等式组,得到结果.
练习册系列答案
相关题目
【题目】某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:
积极参加班级工作 | 不太主动参加班级工作 | 合计 | |
学习积极性高 | 18 | 7 | 25 |
学习积极性一般 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法点拨:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.(参考下表)
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |