题目内容

【题目】如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求点M到平面PBC的距离.

【答案】
(1)证明:设PB的中点为Q,连接AQ,NQ;

∵N为PC的中点,Q为PB的中点,∴QN∥BC且QN= BC=2,

又∵AM=2MD,AD=3,∴AM= AD=2 且AM∥BC,

∴QN∥AM且QN=AM,

∴四边形AMNQ为平行四边形,

∴MN∥AQ.

又∵AQ平面PAB,MN平面PAB,

∴MN∥平面PAB;


(2)解:在Rt△PAB,Rt△PAC中,PA=4,AB=AC=3,

∴PB=PC=5,又BC=4,取BC中点E,连接PE,则PE⊥BC,且PE= =

∴SPBC= ×BC×PE= ×4× =2

设点M到平面PBC的距离为h,则VMPBC= ×SPBC×h= h.

又VMPBC=VPMBC=VPDBC ×SABC×PA= × ×4× ×4=

h= ,得h=

∴点M到平面PBC的距离为为


【解析】(1)设PB的中点为Q,连接AQ,NQ,由三角形中位线定理结合已知可得四边形AMNQ为平行四边形,得到MN∥AQ.再由线面平行的判定可得MN∥平面PAB;(2)在Rt△PAB,Rt△PAC中,由已知求解直角三角形可得PE= = ,进一步得到SPBC . 然后利用等积法求得点M到平面PBC的距离.
【考点精析】本题主要考查了直线与平面平行的判定的相关知识点,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网