题目内容
对任意都有
(Ⅰ)求和的值.
(Ⅱ)数列满足:=+,数列是等差数列吗?请给予证明;
(Ⅲ)令试比较与的大小.
(Ⅰ).(Ⅱ).
(Ⅲ),利用“放缩法”。
解析试题分析:(Ⅰ)因为.所以. 2分
令,得,即. 4分
(Ⅱ)
又 5分
两式相加
.
所以, 7分
又.故数列是等差数列. 9分
(Ⅲ)
10分
12分
所以 14分
考点:本题主要考查抽象函数问题,等差数列的证明,“放缩法”证明不等式,“裂项相消法”。
点评:中档题,本题具有较强的综合性,本解答从确定数列相邻项的关系入手,认识到数列的特征,利用“错位相消法”达到求和目的。“分组求和法”“裂项相消法”“错位相减法”是高考常常考到数列求和方法。(III)先将和式通过放缩利用“裂项相消法”实现求和,达到证明目的。
练习册系列答案
相关题目