题目内容
【题目】下列命题:①函数f(x)=sin2x一cos2x的最小正周期是;
②在等比数列〔}中,若,则a3=士2;
③设函数f(x)=,若有意义,则
④平面四边形ABCD中, ,则四边形ABCD是
菱形. 其中所有的真命题是:( )
A. ①②④ B. ①④ C. ③④ D. ①②③
【答案】B
【解析】①函数,则函数的周期,故①正确;②在等比数列中,若,则,则,又 , 同号, 不合题意,故②不正确;③设函数,则函数的定义域为,若有意义,则,即,则且,故③错误;④平面四边形中, ,则,则四边形为平行四边形, ,则四边形的对角线垂直,则四边形是菱形,故④正确,故选B.
【 方法点睛】本题主要通过对多个命题真假的判断,主要综合考查三角函数的周期性、函数的定义域、等比数列的性质以及平面向量线性元素与数量积公式,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.
练习册系列答案
相关题目
【题目】某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.
(1)若花店一天购进枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝, )的函数解析式.
(2)花店记录了天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量 | |||||||
频数 |
假设花店在这天内每天购进枝玫瑰花,求这天的日利润(单位:元)的平均数.