题目内容

如图,已知PA与⊙O相切,A为切点,PBC为割线,D为⊙O上一点,AD、BC相交于点E.

(1)若AD=AC,求证:AP∥CD;
(2)若F为CE上一点使得∠EDF=∠P,已知EF=1,EB=2,PB=4,求PA的长.
(1)若AD=AC,AP∥CD;(2) PA=6.
(1)∵PA是⊙O的切线,AD是弦,
∴∠PAD=∠ACD.
∵AD=AC,∴∠ADC=∠ACD,
∴∠PAD=∠ADC,
∴AP∥CD.
(2)∵∠EDF=∠P,又∠DEF=∠PEA,
∴△DEF△PEA,有
即EF·EP=EA·ED.而AD、BC是⊙O的相交弦,
∴EC·EB=EA·ED,
故EC·EB=EF·EP,
∴EC==3.
由切割线定理有PA2=PB·PC=4×(3+2+4)=36,
∴PA=6.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网