题目内容
【题目】下列命题:
①若,则;
②已知,,且与的夹角为锐角,则实数 的取值范围是;
③已知是平面上一定点,是平面上不共线的三个点,动点满足,,则的轨迹一定通过的重心;
④在中,,边长分别为,则只有一解;
⑤如果△ABC内接于半径为的圆,且
则△ABC的面积的最大值;
其中正确的序号为_______________________。
【答案】①③⑤
【解析】① 若,则 代入上式得到,故正确;
②已知,,且与的夹角为锐角,则实数的取值范围是且,故选项不正确;
③已知是平面上一定点,是平面上不共线的三个点,动点满足,,记BC中点为E,则,则2,AE直线过重心,故P一定过重心;
④根据正弦定理得,asinC=csinA,∴sinC=,故不成立.
∵2R(sin2A﹣sin2C)=(a﹣b)sinB,∴根据正弦定理,得a2﹣c2=(a﹣b)b=ab﹣b2,
可得a2+b2﹣c2=ab
∴cosC=,
∵角C为三角形的内角,∴角C的大小为
∵c=2Rsin=R
∴由余弦定理c2=a2+b2﹣2abcosC,可得
2R2=a2+b2﹣ab≥2ab﹣ab=(2﹣)ab,当且仅当a=b时等号成立
∴ab≤
∴S△ABC=absinC≤ R2=
即△ABC面积的最大值为;故⑤正确,
故答案为:①③⑤
【题目】已知随机变量 的取值为不大于 的非负整数值,它的分布列为:
0 | 1 | 2 | n | ||
其中 ( )满足: ,且 .
定义由 生成的函数 ,令 .
(I)若由 生成的函数 ,求 的值;
(II)求证:随机变量 的数学期望 , 的方差 ;
( )
(Ⅲ)现投掷一枚骰子两次,随机变量 表示两次掷出的点数之和,此时由 生成的函数记为 ,求 的值.
【题目】某奶茶店对某时间段的奶茶销售量及其价格进行调查,统计出售价元和销售量杯之间的一组数据如下表所示:
价格 | 5 | 5.5 | 6.5 | 7 |
销售量 | 12 | 10 | 6 | 4 |
通过分析,发现销售量对奶茶的价格具有线性相关关系.
(1)求销售量对奶茶的价格的回归直线方程;
(2)欲使销售量为13杯,则价格应定为多少?