ÌâÄ¿ÄÚÈÝ
15£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÀëÐÄÂÊΪ$\frac{1}{2}$£¬F1¡¢F2·Ö±ðΪ×ó¡¢ÓÒ½¹µã£¬¹ýF1´¹Ö±Ó볤ÖáµÄÏÒ³¤Îª3$\sqrt{2}$£®£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©Èçͼ£¬ÒÔÍÖÔ²³¤ÖáABΪֱ¾¶µÄÔ²£ºx2+y2=a2£¬PΪԲOÉÏÓëA£¬B²»ÖغϵÄÒ»µã£¬ÉèPAÓëÍÖÔ²½»ÓÚD£¬ÉèÖ±ÏßDF2£¬PBµÄбÂÊ·Ö±ðΪk1£¬k2£¬Èôk1=¦Ëk2£¬ÇóʵÊý¦ËµÄÈ¡Öµ·¶Î§£®
·ÖÎö £¨1£©°Ñx=-c´úÈëÍÖÔ²µÄ±ê×¼·½³Ì¿ÉµÃ£º$\frac{{c}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¬½âµÃy=¡À$\frac{{b}^{2}}{a}$£¬¿ÉµÃ$\frac{2{b}^{2}}{a}$=3$\sqrt{2}$£¬ÓÖ$\frac{c}{a}$=$\frac{1}{2}$£¬a2=b2+c2£®ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£®
£¨2£©A$£¨-2\sqrt{2}£¬0£©$£¬B$£¨2\sqrt{2}£¬0£©$£¬F2$£¨\sqrt{2}£¬0£©$£®Ö±ÏßPBµÄ·½³ÌΪ£º$y={k}_{2}£¨x-2\sqrt{2}£©$£¬ÔòÖ±ÏßPAµÄбÂÊΪ-$\frac{1}{{k}_{2}}$£¬Æä·½³ÌΪ£ºy=-$\frac{1}{{k}_{2}}$£¨x+2$\sqrt{2}$£©£¬ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª$£¨3{k}_{2}^{2}+4£©{x}^{2}$+16$\sqrt{2}$x+32-24${k}_{2}^{2}$=0£¬ÓÉÓÚ$-2\sqrt{2}+{x}_{D}$=$\frac{-16\sqrt{2}}{3{k}_{2}^{2}+4}$£¬½âµÃxD£¬yD£¬µ±xD¡Ù¡À2ʱ£¬¿ÉµÃk1=$\frac{-4{k}_{2}}{{k}_{2}^{2}-4}$£®»¯Îª¦Ë=$\frac{4}{4-{k}_{2}^{2}}$£¬¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©°Ñx=-c´úÈëÍÖÔ²µÄ±ê×¼·½³Ì¿ÉµÃ£º$\frac{{c}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¬½âµÃy=¡À$\frac{{b}^{2}}{a}$£¬
¡à$\frac{2{b}^{2}}{a}$=3$\sqrt{2}$£¬ÓÖ$\frac{c}{a}$=$\frac{1}{2}$£¬a2=b2+c2£®
ÁªÁ¢½â³ö£ºc=$\sqrt{2}$£¬a=2$\sqrt{2}$£¬b=$\sqrt{6}$£®
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{6}=1$£®
£¨2£©A$£¨-2\sqrt{2}£¬0£©$£¬B$£¨2\sqrt{2}£¬0£©$£¬F2$£¨\sqrt{2}£¬0£©$£®
Ö±ÏßPBµÄ·½³ÌΪ£º$y={k}_{2}£¨x-2\sqrt{2}£©$£¬
ÔòÖ±ÏßPAµÄбÂÊΪ-$\frac{1}{{k}_{2}}$£¬Æä·½³ÌΪ£ºy=-$\frac{1}{{k}_{2}}$£¨x+2$\sqrt{2}$£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=-\frac{1}{{k}_{2}}£¨x+2\sqrt{2}£©}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{6}=1}\end{array}\right.$£¬»¯Îª$£¨3{k}_{2}^{2}+4£©{x}^{2}$+16$\sqrt{2}$x+32-24${k}_{2}^{2}$=0£¬
¡÷£¾0£¬
¡à$-2\sqrt{2}+{x}_{D}$=$\frac{-16\sqrt{2}}{3{k}_{2}^{2}+4}$£¬
½âµÃxD=$\frac{6\sqrt{2}{k}_{2}^{2}-8\sqrt{2}}{3{k}_{2}^{2}+4}$£¬yD=$\frac{-12\sqrt{2}{k}_{2}}{3{k}_{2}^{2}+4}$£¬
xD-$\sqrt{2}$=$\frac{6\sqrt{2}{k}_{2}^{2}-8\sqrt{2}}{3{k}_{2}^{2}+4}-\sqrt{2}$=$\frac{3\sqrt{2}{k}_{2}^{2}-12\sqrt{2}}{3{k}_{2}^{2}+4}$£®
µ±xD¡Ù¡À2ʱ£¬
¡àk1=$\frac{-12\sqrt{2}{k}_{2}}{3\sqrt{2}{k}_{2}^{2}-12\sqrt{2}}$=$\frac{-4{k}_{2}}{{k}_{2}^{2}-4}$£®
¡ßk1=¦Ëk2£¬¡à$\frac{-4{k}_{2}}{{k}_{2}^{2}-4}$=¦Ë•k2£®
»¯Îª¦Ë=$\frac{4}{4-{k}_{2}^{2}}$£¬
¡ßk2¡ÊR£¬k2¡Ù¡À2£¬k2¡Ù0£¬
¡à¦Ë¡Ê£¨-¡Þ£¬0£©¡È£¨1£¬+¡Þ£©£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±Ïßµãбʽ¡¢Ð±ÂʼÆË㹫ʽ¡¢Ï໥´¹Ö±µÄÖ±ÏßбÂÊÖ®¼äµÄ¹Øϵ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | b¡Î¦Á | B£® | b?¦Á | C£® | ÒìÃæ | D£® | ²»È·¶¨ |