题目内容
【题目】已知函数.
(Ⅰ)求的单调区间;
(Ⅱ)设,若对任意,均存在使得,求的取值范围.
【答案】(Ⅰ)见解析;(Ⅱ)
【解析】
(Ⅰ)首先求得导函数的解析式,然后结合函数的定义域和导函数的符号分类讨论即可确定函数的单调区间;
(Ⅱ)首先求得函数的最大值,然后进行等价转化,结合(Ⅰ)中的结果分类讨论即可确定的取值范围.
(Ⅰ).
①当时,,,
在区间上,;在区间上,
故的单调递增区间是,单调递减区间是.
②当时,,
在区间和上,;在区间上,
故的单调递增区间是和,单调递减区间是.
③当时,,故的单调递增区间是.
④当时,,在区间和上,;区间上,
故的单调递增区间是和,单调递减区间是.
(Ⅱ)设,,,为增函数,
由已知,.据此可得.
由(Ⅰ)可知,
①当时,在上单调递增,
故,
所以,,解得,故.
②当时,在上单调递增,在上单调递减,
故.
由可知,,,
所以,,,
综上所述,.
练习册系列答案
相关题目
【题目】大数据时代对于现代人的数据分析能力要求越来越高,数据拟合是一种把现有数据通过数学方法来代入某条数式的表示方式,比如,,2,,n是平面直角坐标系上的一系列点,用函数来拟合该组数据,尽可能使得函数图象与点列比较接近.其中一种描述接近程度的指标是函数的拟合误差,拟合误差越小越好,定义函数的拟合误差为:.已知平面直角坐标系上5个点的坐标数据如表:
x | 1 | 3 | 5 | 7 | 9 |
y | 12 | 4 | 12 |
若用一次函数来拟合上述表格中的数据,求该函数的拟合误差的最小值,并求出此时的函数解析式;
若用二次函数来拟合题干表格中的数据,求;
请比较第问中的和第问中的,用哪一个函数拟合题目中给出的数据更好?请至少写出三条理由