题目内容
【题目】已知点(1,2)是函数的图象上一点,数列的前项和是.
(1)求数列的通项公式;
(2)若,求数列的前n项和
【答案】(1)an=2n-1;(2)Tn=(n-1)2n+1.
【解析】
(1)由点(1,2)在图像上求出,再利用法求出。
(2)利用错位相减法求和,注意相减时项的符号,求和时项数的确定。
(1)把点(1,2)代入函数f(x)=ax得a=2,
所以数列{an}的前n项和为Sn=f(n)-1=2n-1.
当n=1时,a1=S1=1;
当n≥2时,an=Sn-Sn-1=2n-2n-1=2n-1,对n=1时也适合,
∴an=2n-1.
(2)由a=2,bn=logaan+1得bn=n,
所以anbn=n·2n-1.
Tn=1·20+2·21+3·22+…+n·2n-1,①
2Tn=1·21+2·22+3·23+…+(n-1)·2n-1+n·2n.②
由①-②得:-Tn=20+21+22+…+2n-1-n·2n,
所以Tn=(n-1)2n+1.
练习册系列答案
相关题目
【题目】某工厂为了对本工厂工人的理论成绩与实践能力进行分析,决定从本工厂工人中随机抽取一个样本容量为7的样本进行分析.如果随机抽取的7名工人的理论成绩与实践能力值单位:分对应如下表:
工人序号i | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
理论成绩 | 60 | 65 | 70 | 75 | 85 | 87 | 90 |
实践能力值 | 70 | 77 | 80 | 85 | 90 | 86 | 93 |
(1)求这7名工人的理论成绩与实践能力值的中位数、极差;
(2)若规定85分以上包括85分为优秀,从这7名工人中抽取3名工人,记3名工人中理论成绩和实践能力值均为优秀的人数为X,求X的分布列和期望;
(3)根据下表数据,求实践能力值y关于理论成绩x的线性回归方程.系数精确到
附:线性回归方程中,,.
76 | 83 | 812 | 526 |