题目内容

【题目】已知函数f(x)=sinx+ cosx.求:
(1)f(x)图象的对称中心的坐标;
(2)f(x)的单调区间.

【答案】
(1)解:函数f(x)=sinx+ cosx=2sin(x+ ),

令x+ =kπ,求得x=kπ﹣ ,可得函数的图象的对称中心为(kπ﹣ ,0),k∈Z


(2)解:令2kπ﹣ ≤x+ ≤2kπ+ ,求得2kπ﹣ ≤x≤2kπ+

可得函数的增区间为[2kπ﹣ ,2kπ+ ],k∈Z;

令2kπ+ ≤x+ ≤2kπ+ ,求得2kπ+ ≤x≤2kπ+

可得函数的增区间为[2kπ+ ,2kπ+ ],k∈Z


【解析】(1)利用两角和的正弦公式化简函数的解析式,再利用正弦函数的图象的对称中心,求得f(x)图象的对称中心的坐标.(2)利用正弦函数的单调性求得f(x)的单调区间.
【考点精析】掌握两角和与差的正弦公式是解答本题的根本,需要知道两角和与差的正弦公式:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网