题目内容
17.已知直线y=kx+1与圆x2+y2=4相交于A、B两点,以OA、OB为邻边作平行四边形OAPB,求点P的轨迹方程.分析 利用向量求得坐标之间的关系,直线y=kx+1,代入x2+y2=4,可得x=-$\frac{2k}{1+{k}^{2}}$,y=$\frac{2}{1+{k}^{2}}$,即可得出结论.
解答 解:设动点P(x,y)及圆上点A(a,b),B(m,n),
∵以OA、OB为邻边作平行四边形OAPB,
∴$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,
∴(a+m,b+n)=(x,y),
直线y=kx+1,代入x2+y2=4,可得(1+k2)x2+2kx-3=0,
∴a+m=-$\frac{2k}{1+{k}^{2}}$,
∴b+n=$\frac{2}{1+{k}^{2}}$
∴x=-$\frac{2k}{1+{k}^{2}}$,y=$\frac{2}{1+{k}^{2}}$
∴x2+(y-1)2=1.
点P的轨迹方程为:x2+(y-1)2=1.
点评 本题考查轨迹方程,解题的关键是确定动点坐标之间的关系,利用消参法求轨迹方程.
练习册系列答案
相关题目
6.从总体为N的一批零件中使用简单随机抽样抽取一个容量为30的样本,若某个零件被第2次抽取的可能性为1%,则N=( )
| A. | 100 | B. | 3000 | C. | 101 | D. | 3001 |
7.已知复数$\overrightarrow{z}$=$\frac{2i}{3+4i}$,i为虚数单位,则|$\overrightarrow{z}$|=( )
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |