题目内容

12.求函数f(x)=$\frac{4}{2-{x}^{2}}$的图形的渐近线.

分析 分两类求解:①水平渐近线,②垂直渐近线,都是通过取极限的方式确定其方程.

解答 解:函数f(x)图象的渐近线有两类:
①水平渐近线,
$\underset{lim}{x→+∞}$f(x)=$\underset{lim}{x→+∞}$$\frac{4}{2-{x}^{2}}$=0,
$\underset{lim}{x→-∞}$f(x)=$\underset{lim}{x→+∞}$$\frac{4}{2-{x}^{2}}$=0,
由此可知,y=0为该函数图象的渐近线;
②垂直渐近线,
令2-x2=0解得,x=$\sqrt{2}$或x=-$\sqrt{2}$,
即$\underset{lim}{x→\sqrt{2}}$f(x)=∞,$\underset{lim}{x→-\sqrt{2}}$f(x)=∞,
综合得,该函数有三条渐近线,方程分别为:
y=0,x=-$\sqrt{2}$,x=$\sqrt{2}$(如右图).

点评 本题主要考查了函数的图象和性质,涉及函数图象的渐近线的求法,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网