题目内容

【题目】在△ABC中,角A、B、C所对的边分别为a,b,c.已知a+c=3 ,b=3.
(1)求cosB的最小值;
(2)若 =3,求A的大小.

【答案】
(1)解:在△ABC中,由余弦定理得cosB= = =

∵ac≤( 2=

∴当ac= 时,cosB取得最小值


(2)解:由余弦定理得b2=a2+c2﹣2accosB.

accosB=3.

∴9=a2+c2﹣6,∴a2+c2=15.

又∵a+c=3 ,∴ac=6.

∴a=2 ,c= 或a= ,c=2

∴cosB= ,sinB=

由正弦定理得

∴sinA= =1或

∴A= 或A=


【解析】(1)根据基本不等式求出ac的最大值,利用余弦定理得出cosB的最小值;(2)利用余弦定理列方程解出a,c,cosB,使用正弦定理得出sinA.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网