题目内容
如图,已知
是
底面为正方形的长方体,
,
,点
是
上的动点.
(1)试判断不论点
在
上的
任何位置,是否都有平面
垂直于平面
?并证明你的结论;
(2)当
为
的中点时,求异面直线
与
所成角的余弦值;
(3)求
与平面![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717137295.gif)
所成角的正切值的最大值.![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231457172931337.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145716919580.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145716934112.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145716934519.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145716950298.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145716981202.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145716997258.gif)
(1)试判断不论点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145716981202.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145716997258.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314571704372.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717106298.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717137295.gif)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145716981202.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145716997258.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717215242.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717231257.gif)
(3)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717246248.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717137295.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314571704372.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231457172931337.gif)
(1)不论点
在![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314571704372.gif)
上的任何位置,都有平面
垂直于平面
.
证明如下:由题意知,
,
又
平面
又
平面
平面![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717106298.gif)
平面![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717137295.gif)
.
(2)解法一:过点P作
,垂足为
,连结
(如图),则
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231457177611412.gif)
是异面直线
与
所成的角.
在
中 ∵
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717839506.gif)
∴
,
,
. 又
.
在
中,
.
异面异面直线
与
所成角的余弦值为
.
解法二:以
为原点,
所在的直线为x轴建立空间直角坐标系如图示,则
,
,
,
,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718182464.gif)
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231457181981039.gif)
.
∴异面异面直线
与
所成角的余弦值为
.
(3)由(1)知,
平面![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717137295.gif)
,
是
与平面
所成的角,
且
.
当
最小时,
最大,这时
,由![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718494735.gif)
得
,即
与平面
所成角的正切值的最大值
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145716981202.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314571704372.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145716997258.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717106298.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717137295.gif)
证明如下:由题意知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717402366.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717449345.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717465447.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717480296.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717137295.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717511286.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717106298.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717543128.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717106298.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717621108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717137295.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314571765272.gif)
(2)解法一:过点P作
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717667357.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717683204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717699255.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717730464.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231457177611412.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717777425.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717215242.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717231257.gif)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717808389.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145716934519.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717839506.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717855694.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717870590.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717886728.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717901593.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717543128.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717933380.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717948481.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717964958.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717543128.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717215242.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717231257.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718057278.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231457180731510.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718089212.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718104365.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718104360.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718120526.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718135374.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718151375.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718167612.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718182464.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231457181981039.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718213651.gif)
∴异面异面直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717215242.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717231257.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718057278.gif)
(3)由(1)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718260282.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717137295.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314571832365.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718323333.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717246248.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717137295.gif)
且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718385853.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718401250.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718447493.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718463348.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718494735.gif)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718510683.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717246248.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145717137295.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145718603293.gif)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目