题目内容
【题目】如图,在正方体中,已知E,F,G,H分别是A1D1,B1C1,D1D,C1C的中点.
(1)求证:EF∥平面ABHG;
(2)求证:平面ABHG⊥平面CFED.
【答案】(1)见解析(2)见解析
【解析】
试题分析:(1)由是的中点,可得,从而可得,根据线面平行的判定定理可得结论;(2)根据线面垂直的性质可得,根据相似三角形的性质可得,从而根据线面垂直的判定定理可得平面 ,进而根据面面垂直的判定定理可得结论.
试题解析:(1)因为E,F是A1D1,B1C1的中点,所以,在正方体中,A1B1∥AB,所以. 又 平面ABHG,AB平面ABHG,所以EF∥平面ABHG,.
(2)在正方体ABCDA1B1C1D1中,CD 平面BB1C1C,又平面,所以.① 设,△BCH≌△,所以,因为∠HBC+∠PHC=90,所以+∠PHC=90.
所以,即.② 由①②,又,DC,CF平面CFED,
所以平面CFED.又平面ABHG,所以平面ABHG⊥平面CFED.
【方法点晴】本题主要考查线面平行的判定定理、面面垂直的判定定理,属于中档题 . 证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行;②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.
【题目】进入春天,大气流动性变好,空气质量随之提高,自然风光越来越美,自驾游乡村游也就越来越热.某旅游景区试图探究车流量与景区接待能力的相关性,确保服务质量和游客安全,以便于确定是否对进入景区车辆实施限行.为此,该景区采集到过去一周内某时段车流量与接待能力指数的数据如表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 | 周六 | 周日 |
车流量(x千辆) | 10 | 9 | 9.5 | 10.5 | 11 | 8 | 8.5 |
接待能力指数y | 78 | 76 | 77 | 79 | 80 | 73 | 75 |
(I)根据表中周一到周五的数据,求y关于x的线性回归方程.
(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为该线性回归方程是可靠的.请根据周六和周日数据,判定所得的线性回归方程是否可靠?
附参考公式及参考数据:线性回归方程,其中;