题目内容
已知椭圆C:
=1(a>b>0),点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:x2+y2=
(c是椭圆的半焦距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240417082193238.png)
(1)若椭圆C经过两点
、
,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求
·
的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围..
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708188692.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708203403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240417082193238.png)
(1)若椭圆C经过两点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708250846.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708266809.png)
(2)当c为定值时,求证:直线MN经过一定点E,并求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708281381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708297403.png)
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围..
(1)
=1.(2)见解析(3)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708328889.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708313671.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708328889.png)
(1)解:令椭圆mx2+ny2=1,其中m=
,n=
,得
所以m=
,n=
,即椭圆方程为
=1.
(2)证明:直线AB:
=1,设点P(x0,y0),则OP的中点为
,所以点O、M、P、N所在的圆的方程为
=
,化简为x2-x0x+y2-y0y=0,与圆x2+y2=
作差,即直线MN:x0x+y0y=
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240417085935327.png)
因为点P(x0,y0)在直线AB上,得
=1,
所以x0
+
=0,即
得x=-
,y=
,故定点E
,
·
=
=
.
(3)解:由直线AB与圆G:x2+y2=
(c是椭圆的焦半距)相离,则
>
,即4a2b2>c2(a2+b2),4a2(a2-c2)>c2(2a2-c2),得e4-6e2+4>0.因为0<e<1,所以0<e2<3-
①.连结ON、OM、OP,若存在点P使△PMN为正三角形,则在Rt△OPN中,OP=2ON=2r=c,所以
≤c,a2b2≤c2(a2+b2),a2(a2-c2)≤c2(2a2-c2),得e4-3e2+1≤0.因为0<e<1,所以
≤e2<1,②.由①②得
≤e2<3-
,所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708328889.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708344397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708359395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240417083911236.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708406330.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708422303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708313671.png)
(2)证明:直线AB:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708453625.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708469817.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240417084841141.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708500647.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708203403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708203403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240417085935327.png)
因为点P(x0,y0)在直线AB上,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708609683.png)
所以x0
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708625827.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708640816.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240417086711228.png)
得x=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708687480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708703480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708718867.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708281381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708297403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240417087811394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708203403.png)
(3)解:由直线AB与圆G:x2+y2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708203403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708827634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708827369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708843322.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708827634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708890544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708890544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708843322.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041708328889.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目