题目内容
已知椭圆C:=1(a>b>0),点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:x2+y2=(c是椭圆的半焦距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.
(1)若椭圆C经过两点、,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求·的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围..
(1)若椭圆C经过两点、,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求·的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围..
(1)=1.(2)见解析(3)
(1)解:令椭圆mx2+ny2=1,其中m=,n=,得所以m=,n=,即椭圆方程为=1.
(2)证明:直线AB:=1,设点P(x0,y0),则OP的中点为,所以点O、M、P、N所在的圆的方程为=,化简为x2-x0x+y2-y0y=0,与圆x2+y2=作差,即直线MN:x0x+y0y=.
因为点P(x0,y0)在直线AB上,得=1,
所以x0+=0,即
得x=-,y=,故定点E ,·==.
(3)解:由直线AB与圆G:x2+y2= (c是椭圆的焦半距)相离,则>,即4a2b2>c2(a2+b2),4a2(a2-c2)>c2(2a2-c2),得e4-6e2+4>0.因为0<e<1,所以0<e2<3- ①.连结ON、OM、OP,若存在点P使△PMN为正三角形,则在Rt△OPN中,OP=2ON=2r=c,所以≤c,a2b2≤c2(a2+b2),a2(a2-c2)≤c2(2a2-c2),得e4-3e2+1≤0.因为0<e<1,所以≤e2<1,②.由①②得≤e2<3-,所以
(2)证明:直线AB:=1,设点P(x0,y0),则OP的中点为,所以点O、M、P、N所在的圆的方程为=,化简为x2-x0x+y2-y0y=0,与圆x2+y2=作差,即直线MN:x0x+y0y=.
因为点P(x0,y0)在直线AB上,得=1,
所以x0+=0,即
得x=-,y=,故定点E ,·==.
(3)解:由直线AB与圆G:x2+y2= (c是椭圆的焦半距)相离,则>,即4a2b2>c2(a2+b2),4a2(a2-c2)>c2(2a2-c2),得e4-6e2+4>0.因为0<e<1,所以0<e2<3- ①.连结ON、OM、OP,若存在点P使△PMN为正三角形,则在Rt△OPN中,OP=2ON=2r=c,所以≤c,a2b2≤c2(a2+b2),a2(a2-c2)≤c2(2a2-c2),得e4-3e2+1≤0.因为0<e<1,所以≤e2<1,②.由①②得≤e2<3-,所以
练习册系列答案
相关题目