题目内容

18.在△ABC中,D为BC边上一点,若△ABD是等边三角形,且AC=4$\sqrt{3}$,则△ADC的面积的最大值为$4\sqrt{3}$.

分析 先利用余弦定理求得建立等式,利用基本不等式的性质确定AD•DC的最大值,进而根据三角形面积公式求得三角形面积的最大值.

解答 解:
在△ACD中,cos∠ADC=$\frac{A{D}^{2}+D{C}^{2}-A{C}^{2}}{2AD•DC}$=$\frac{A{D}^{2}+D{C}^{2}-48}{2AD•DC}$=-$\frac{1}{2}$,
整理得AD2+CD2=48-AD•DC≥2•AD•DC,
∴AD•DC≤16,AD=CD时取等号,
∴△ADC的面积S=$\frac{1}{2}$AD•DC•sin∠ADC=$\frac{\sqrt{3}}{4}$AD•DC≤4$\sqrt{3}$,
故答案为:$4\sqrt{3}$

点评 本题主要考查了正弦定理的应用和余弦定理的应用.本题灵活运用了基本不等式的基本性质解决了三角形求最值的问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网