题目内容
19.若θ是△ABC的一个内角,且sinθcosθ=$\frac{1}{8}$,则sinθ+cosθ=( )A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $-\frac{{\sqrt{5}}}{2}$ |
分析 利用完全平方公式及同角三角函数间基本关系化简得到(sinθ+cosθ)2=1+2sinθcosθ,把已知等式代入,开方即可求出值.
解答 解:∵θ是△ABC的一个内角,且sinθcosθ=$\frac{1}{8}$>0,
∴sinθ>0,cosθ>0,即sinθ+cosθ>0,
∵(sinθ+cosθ)2=1+2sinθcosθ=$\frac{5}{4}$,
∴sinθ+cosθ=$\frac{\sqrt{5}}{2}$,
故选:C.
点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目
9.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,且$\overrightarrow{b}$•(2$\overrightarrow{a}$+$\overrightarrow{b}$)=1,则$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值是( )
A. | -$\frac{1}{3}$ | B. | $\frac{\sqrt{2}}{3}$ | C. | -$\frac{\sqrt{2}}{4}$ | D. | $\frac{1}{3}$ |
4.若正数a,b满足:$\frac{1}{a}+\frac{2}{b}=1$则$\frac{2}{a-1}+\frac{1}{b-2}$的最小值为( )
A. | 2 | B. | $\sqrt{2}$ | C. | $2\sqrt{2}$ | D. | 1 |