题目内容

【题目】在直角梯形PBCD中, ,A为PD的中点,如图.将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且 ,如图.
(Ⅰ)求证:SA⊥平面ABCD;
(Ⅱ)求二面角E﹣AC﹣D的正切值.

【答案】解法一:(Ⅰ)证明:在题平面图形中,由题意可知,BA⊥PD,ABCD为正方形,所以在翻折后的图中,SA⊥AB,SA=2,四边形ABCD是边长为2的正方形,
因为SB⊥BC,AB⊥BC,SB∩AB=B
所以BC⊥平面SAB,
又SA平面SAB,
所以BC⊥SA,
又SA⊥AB,BC∩AB=B
所以SA⊥平面ABCD,
(Ⅱ)在AD上取一点O,使 ,连接EO
因为 ,所以EO∥SA
因为SA⊥平面ABCD,
所以EO⊥平面ABCD,
过O作OH⊥AC交AC于H,连接EH,
则AC⊥平面EOH,
所以AC⊥EH.
所以∠EHO为二面角E﹣AC﹣D的平面角,
在Rt△AHO中,

即二面角E﹣AC﹣D的正切值为
解法二:(Ⅰ)同方法一
(Ⅱ)解:如图,以A为原点建立直角坐标系,A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),S(0,0,2),E(0,
∴平面ACD的法向为
设平面EAC的法向量为 =(x,y,z),

所以 ,可取
所以 =(2,﹣2,1).
所以
所以
即二面角E﹣AC﹣D的正切值为


【解析】(法一)(Ⅰ)由题意可知,翻折后的图中SA⊥AB①,易证BC⊥SA②,由①②根据直线与平面垂直的判定定理可得SA⊥平面ABCD;(Ⅱ)(三垂线法)由 考虑在AD上取一点O,使得 ,从而可得EO∥SA,所以EO⊥平面ABCD,过O作OH⊥AC交AC于H,连接EH,∠EHO为二面角E﹣AC﹣D的平面角,在Rt△AHO中求解即可(法二:空间向量法)(Ⅰ)同法一(Ⅱ)以A为原点建立直角坐标系,易知平面ACD的法向为 ,求平面EAC的法向量,代入公式求解即可

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网