题目内容
在数列{an}中,a1=1,{an}的前n项和Sn满足2Sn=an+1.(1)求数列{an}的通项公式;(2)若存在n∈N*,使得λ≤,求实数λ的最大值.
(1) an= (2) 3
解析
设数列的前项和为,且,其中是不为零的常数.(1)证明:数列是等比数列;(2)当时,数列满足,,求数列的通项公式.
已知等比数列{an}满足an+1+an=9·2n-1,n∈N*.(1)求数列{an}的通项公式;(2)设数列{an}的前n项和为Sn,若不等式Sn>kan-2对一切n∈N*恒成立,求实数k的取值范围.
已知数列{an}是等差数列,a2=6,a5=12,数列{bn}的前n项和是Sn,且Sn+bn=1.(1)求数列{an}的通项公式.(2)求证:数列{bn}是等比数列.(3)记cn=,{cn}的前n项和为Tn,若Tn<对一切n∈N*都成立,求最小正整数m.
已知数列{an}和{bn}满足:a1=λ,an+1=an+n-4,bn=(-1)n(an-3n+21),其中λ为实数,n为正整数.(1)对任意实数λ,证明:数列{an}不是等比数列;(2)试判断数列{bn}是否为等比数列,并证明你的结论.
已知等比数列前项和为,且满足,(Ⅰ)求数列的通项公式;(Ⅱ)求的值.
已知等比数列的公比为,是的前项和.(1)若,,求的值;(2)若,,有无最值?并说明理由;(3)设,若首项和都是正整数,满足不等式:,且对于任意正整数有成立,问:这样的数列有几个?
已知等比数列满足.(1)求数列的通项公式;(2)在与之间插入个数连同与按原顺序组成一个公差为()的等差数列.①设,求数列的前和;②在数列中是否存在三项(其中成等差数列)成等比数列?若存在,求出这样的三项;若不存在,说明理由.