题目内容
已知数列中,,
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的前项和;
(Ⅲ)(理科)若存在,使得成立,求实数的最小值。
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的前项和;
(Ⅲ)(理科)若存在,使得成立,求实数的最小值。
(Ⅰ)┄┄┄ ①
┄┄┄ ②
由①-②得:
所以是从第二项起首项为2,公比为3的等比数列,则:
(Ⅱ)由(Ⅰ)可知当时,
ⅰ当时,
ⅱ当时, ┄┄┄ ③
┄┄┄ ④
由③-④得:
又当时,满足上式
所以:
(Ⅲ)由等价于,由(Ⅰ)可知,当时,
设,则
所以, ,即
所以,又因为
所以, 实数的最小值为。
┄┄┄ ②
由①-②得:
所以是从第二项起首项为2,公比为3的等比数列,则:
(Ⅱ)由(Ⅰ)可知当时,
ⅰ当时,
ⅱ当时, ┄┄┄ ③
┄┄┄ ④
由③-④得:
又当时,满足上式
所以:
(Ⅲ)由等价于,由(Ⅰ)可知,当时,
设,则
所以, ,即
所以,又因为
所以, 实数的最小值为。
略
练习册系列答案
相关题目