题目内容
6.已知直线y=a与函数f(x)=|x2-4x|的图象恰有3个交点,则a=4.分析 若函数y=|x2-4x|与函数y=a有3个交点,可由函数图象的对折变换先画出函数y=|x2-4x|的图象,结合图象可得实数a的取值范围
解答 解:函数y=|x2-4x|的图象如右图所示:
结合图象可得:
当a=4时函数y=|x2-4x|与y=a的图象有3个交点,
故答案为:4.
点评 本题考查了根的存在性及根的个数判断,以及函数与方程的思想,解答关键是运用数形结合的思想,属于中档题
练习册系列答案
相关题目
1.数列1×$\frac{1}{2}$,2×$\frac{1}{4}$,3×$\frac{1}{8}$,4×$\frac{1}{16}$,…的前n项和为( )
A. | 2-$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$ | B. | 2-$\frac{1}{{2}^{n-1}}$-$\frac{n}{{2}^{n}}$ | C. | $\frac{1}{2}$(n2+n+2)-$\frac{1}{{2}^{n}}$ | D. | $\frac{1}{2}$(n+1)n+1-$\frac{1}{{2}^{n+1}}$ |
11.2015年高中学业水平考试之后,为了调查同学们的考试成绩,随机抽查了某高中的高二一班的10名同学的语文、数学、英语成绩,已知其考试等级分为A,B,C,现在对他们的成绩进行量化:A级记为2分,B级记为1分,C级记为0分,用(x,y,z)表示每位同学的语文、数学、英语的得分情况,再用综合指标w=x+y+z的值评定该同学的得分等级.若w≥4,则得分等级为一级;若2≤w≤3.则得分等级为二级;若0≤w≤1,则得分等级为三级.得到如下结果:
(Ⅰ)在这10名同学中任取两人,求这两位同学英语得分相同的概率;
(Ⅱ)从得分等级是一级的同学中任取一人,其综合指标为a,从得分等级不是一级的同学中任取一人,其综合指标为b,记随机变量X=a-b,求X的分布列及其数学期望.
人员编号 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 |
(x,y,z) | (1,1,2) | (2,1,1) | (2,2,2) | (0,0,1) | (1,2,1) | (1,2,2) | (1,1,1) | (1,2,2) | (1,2,1) | (1,1,1) |
(Ⅱ)从得分等级是一级的同学中任取一人,其综合指标为a,从得分等级不是一级的同学中任取一人,其综合指标为b,记随机变量X=a-b,求X的分布列及其数学期望.