ÌâÄ¿ÄÚÈÝ
7£®ÔÚƽÃæÖ±½Ç×ø±êϵÄÚ£¬ÉèM£¨x1£¬y1£©¡¢N£¨x2£¬y2£©Îª²»Í¬µÄÁ½µã£¬Ö±ÏßlµÄ·½³ÌΪax+by+c=0£¬¦Ä=$\frac{{a{x_1}+b{y_1}+c}}{{a{x_2}+b{y_2}+c}}$£®ÓÐËĸöÅжϣº¢ÙÈô¦Ä=1£¬Ôò¹ýM¡¢NÁ½µãµÄÖ±ÏßÓëÖ±ÏßlƽÐУ»
¢ÚÈô¦Ä=-1£¬ÔòÖ±Ïßl¾¹ýÏ߶ÎMNµÄÖе㣻
¢Û´æÔÚʵÊý¦Ä£¬Ê¹µãNÔÚÖ±ÏßlÉÏ£»
¢ÜÈô¦Ä£¾1£¬ÔòµãM¡¢NÔÚÖ±ÏßlµÄͬ²à£¬ÇÒÖ±ÏßlÓëÏ߶ÎMNµÄÑÓ³¤ÏßÏཻ£®
ÉÏÊöÅжÏÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£® | ¢Ù¢Ú¢Û | B£® | ¢Ù¢Ú¢Ü | C£® | ¢Ù¢Û¢Ü | D£® | ¢Ù¢Ú¢Û¢Ü |
·ÖÎö ÓÉÌõ¼þ¸ù¾ÝÖ±ÏßµÄÒ»°ãʽ·½³ÌµÄÌØÕ÷¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬Åжϸ÷¸öÑ¡ÏîÊÇ·ñÕýÈ·£¬´Ó¶øµÃ³ö½áÂÛ£®
½â´ð ½â£ºÈô¦Ä=$\frac{{a{x_1}+b{y_1}+c}}{{a{x_2}+b{y_2}+c}}$=1£¬ÔòM¡¢NÁ½µãµ½Ö±ÏßlµÄ¾àÀëÏàµÈ£¬ÇÒM¡¢NÁ½µãÔÚÖ±ÏßlµÄͬһ²à£¬
¹ÊÓйýM¡¢NÁ½µãµÄÖ±ÏßÓëÖ±ÏßlƽÐУ¬¹Ê¢ÙÕýÈ·£®
Èô¦Ä=$\frac{{a{x_1}+b{y_1}+c}}{{a{x_2}+b{y_2}+c}}$=-1£¬ÔòM¡¢NÁ½µãµ½Ö±ÏßlµÄ¾àÀëÏàµÈ£¬ÇÒM¡¢NÁ½µãÔÚÖ±ÏßlµÄÒì²à£¬
¹ÊÖ±Ïßl¾¹ýÏ߶ÎMNµÄÖе㣬¹Ê¢ÚÕýÈ·£®
ÓÉÓÚax2+by2+c¡Ù0£¬¹Ê²»´æÔÚʵÊý¦Ä£¬Ê¹µãNÔÚÖ±ÏßlÉÏ£¬¹Ê¢Û²»ÕýÈ·£®
Èô¦Ä£¾1£¬ÔòµãMµ½Ö±ÏߵľàÀë´óÓÚµãNµ½Ö±ÏßlµÄ¾àÀ룬ÇÒM¡¢NÔÚÖ±ÏßlµÄͬ²à£¬¹ÊÖ±ÏßlÓëÏ߶ÎMNµÄÑÓ³¤ÏßÏཻ£¬¹Ê¢ÜÕýÈ·£¬
¹ÊÑ¡£ºB£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÖ±ÏßµÄÒ»°ãʽ·½³Ì£¬µãµ½Ö±ÏߵľàÀ빫ʽ£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
5£®ÏÂÁÐ˵·¨£º¢Ù{1£¬2£¬3£¬4}ºÍ{4£¬3£¬2£¬1}ÊÇͬһ¸ö¼¯ºÏ£»¢Ú∅ºÍ{0}ÊÇͬһ¸ö¼¯ºÏ£»¢Û{£¨x£¬y£©|y=x2+1}ºÍ{y|y=x2+1}ÊÇͬһ¸ö¼¯ºÏ£»¢Ü{y|y=x+1£¬x¡ÊZ}ºÍ{m|m=n-1£¬n¡ÊZ}ÊÇͬһ¸ö¼¯ºÏ£®ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£® | ¢Ù¢Û | B£® | ¢Ù¢Ú | C£® | ¢Ù | D£® | ¢Ù¢Ü |
3£®|a-b|=|a|+|b|³ÉÁ¢µÄÌõ¼þÊÇ£¨¡¡¡¡£©
A£® | ab£¾0 | B£® | ab£¾1 | C£® | ab¡Ü0 | D£® | ab¡Ü1 |
17£®Èçͼ£¬Õý·½ÌåABCD-A1B1C1D1ÖУ¬OΪµ×ÃæABCDµÄÖÐÐÄ£¬MΪÀâBB1µÄÖе㣬ÔòÏÂÁнáÂÛÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£® | D1O¡ÎƽÃæA1BC1 | B£® | D1O¡ÍƽÃæAMC | ||
C£® | ¶þÃæ½ÇM-AC-BµÈÓÚ45¡ã | D£® | ÒìÃæÖ±ÏßBC1ÓëACËù³ÉµÄ½ÇµÈÓÚ60¡ã |