搜索
题目内容
等轴双曲线
C
与椭圆
有公共的焦点,则双曲线
C
的方程为____________。
试题答案
相关练习册答案
椭圆
的焦点坐标为
,则设等轴双曲线方程为
,从而有
,解得
,所以双曲线方程为
练习册系列答案
学习总动员暑假总复习系列答案
暑假一本通内蒙古大学出版社系列答案
轻松总复习假期作业系列答案
暑假园地新课程系列答案
永乾教育暑假作业快乐假期延边人民出版社系列答案
暑假作业河北美术出版社系列答案
轻松暑假快乐学习系列答案
开心暑假西南师范大学出版社系列答案
新课程暑假BOOK系列答案
动感假期内蒙古人民出版社系列答案
相关题目
.(本小题满分13分)
P
为椭圆
上任意一点,
为左、右焦点,
如图所示.
(1)若
的中点为
,求证:
(2)若∠
,求|
PF
1
|·|
PF
2
|之值;
(3)椭圆上是否存在点
P
,使·=0,若存在,求出
P
点的坐标,若不存在,试说明理由
椭圆
的离心率
,右焦点到直线
的距离为
,过
的直线
交椭圆于
两点.(Ⅰ) 求椭圆的方程;(Ⅱ) 若直线
交
轴于
,
,求直线
的方程.
椭圆
的焦点为
、
,点
在椭圆上,若
,则
___.
过椭圆
(
)的左焦点
作
轴的垂线交椭圆于点
,
为右焦点,若
,则椭圆的离心率为( )
A.
B.
C.
D.
(本题满分10分)
已知椭圆
的方程为
,称圆心在坐标原点
,半径为
的圆为椭圆
的“伴随圆”,椭圆
的短轴长为2,离心率为
.
(Ⅰ)求椭圆
及其“伴随圆”的方程;
(Ⅱ)若直线
与椭圆
交于
两点,与其“伴随圆”交于
两点,当
时,求△
面积的最大值.
已知椭圆
上的点到右焦点F的最小距离是
,
到上顶点的距离为
,点
是线段
上的一个动点.
(I)求椭圆的方程;
(Ⅱ)是否存在过点
且与
轴不垂直的直线
与椭圆交于
、
两点,使得
,并说明理由.
.(本题14分)过点
的椭圆
(
)的离心率为
,椭圆与
轴的交于两点
(
,
),
(
,
),过点
的直线
与椭圆交于另一点
,并与
轴交于点
,直线
与直线
叫与点
.
(I)当直线
过椭圆右交点时,求线段
的长;
(II)当点
异于
两点时,求证:
为定值.
过点(5,0)的椭圆
与双曲线
有共同的焦点,
则该椭圆的短轴长为( )
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总