题目内容
【题目】公元前世纪的毕达哥拉斯是最早研究“完全数”的人.完全数是一种特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.若从集合中随机抽取两个数,则这两个数中有完全数的概率是______.
【答案】
【解析】
依次按照完全数的定义1,6,24,28,36,得到集合中为完全数,不为完全数,在集合中任取两个数有种情况,在集合中任取两个数有种情况,利用古典概型和互斥事件的概率公式即得解.
1没有除自身外的约数,因此1不为完全数;
6的真因子为1,2,3,1+2+3=6,故6为完全数;
24的真因子为1,2,3,4,6,8,12,1+2+3+4+6+8+12=36,故24不为完全数;
28的真因子为1,2,4,7,14,1+2+4+7+14=28,故28为完全数;
36的真因子为1,2,3,4,6,9,12,18,1+2+3+4+6+9+12+18=54,故36不为完全数;
因此集合中为完全数,不为完全数.
在集合中任取两个数有种情况;
在集合中任取两个数有种情况;
这两个数中有完全数的对立事件为取到的两个数都不是完全数,因此:
故答案为:
【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
交付金额(元) 支付方式 | (0,1000] | (1000,2000] | 大于2000 |
仅使用A | 18人 | 9人 | 3人 |
仅使用B | 10人 | 14人 | 1人 |
(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;
(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.