题目内容
14.若tanα=$\frac{1}{2},tanβ=\frac{1}{3},α,β∈(0,\frac{π}{4})$,则α+β=$\frac{π}{4}$.分析 直接利用两角和的正切函数求解即可.
解答 解:tanα=$\frac{1}{2},tanβ=\frac{1}{3},α,β∈(0,\frac{π}{4})$,
则tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=$\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}×\frac{1}{3}}$=1,
∴α+β=$\frac{π}{4}$.
故答案为:$\frac{π}{4}$.
点评 本题考查两角和的正切函数的应用,考查计算能力.
练习册系列答案
相关题目
2.已知动点P与平面上两定点A(-$\sqrt{2}$,0),B($\sqrt{2}$,0)连线的斜率的积为定值-$\frac{1}{2}$.则动点P的轨迹方程C( )
A. | $\frac{{x}^{2}}{5}$$+\frac{{y}^{2}}{9}$=1 | B. | $\frac{{x}^{2}}{2}$+y2=1 | C. | $\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{16}$=1 | D. | $\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{9}$=1 |
6.用反证法证明命题“三角形的内角至少有一个大于或等于60°”时,假设正确的是( )
A. | 假设至多有一个内角大于或等于60° | |
B. | 假设至多有两个内角大于或等于60° | |
C. | 假设没有一内角大于或等于60° | |
D. | 假设没有一个内角或至少有两个内角大于或等于60° |
4.下列函数中,在(-1,1)上有零点且单调递增的是( )
A. | y=log2(x+2) | B. | y=2x-1 | C. | y=x2-$\frac{1}{2}$ | D. | y=-x2 |