题目内容

【题目】已知集合A={a1 , a2 , …,an},ai∈R,i=1,2,…,n,并且n≥2. 定义 (例如: ).
(Ⅰ)若A={1,2,3,4,5,6,7,8,9,10},M={1,2,3,4,5},集合A的子集N满足:N≠M,且T(M)=T(N),求出一个符合条件的N;
(Ⅱ)对于任意给定的常数C以及给定的集合A={a1 , a2 , …,an},求证:存在集合B={b1 , b2 , …,bn},使得T(B)=T(A),且
(Ⅲ)已知集合A={a1 , a2 , …,a2m}满足:ai<ai+1 , i=1,2,…,2m﹣1,m≥2,a1=a,a2m=b,其中a,b∈R为给定的常数,求T(A)的取值范围.

【答案】解:(Ⅰ)N={6,7,8,9,10}.
(Ⅱ)证明:令B={d+a1 , d+a2 , …,d+an},(d为待定参数).
T(B)= |(d+ai)﹣(d+aj)|= |aj﹣ai|=T(A), =nd+ =c,
取d= 即可.
(Ⅲ)下面利用数学归纳法证明 |aj﹣ai|= (2m+1﹣2k)(a2m+12k﹣ak),
当m=2时, |aj﹣ai|=|a4﹣a3|+|a3﹣a2|+|a2﹣a1|+|a4﹣a2|+|a3﹣a1|+|a4﹣a1|=3(a4﹣a1)+(|a3﹣a2).成立.
假设结论对m时成立,下面证明m+1时的情形.
|aj﹣ai|= |aj﹣ai|+| (a2m+1﹣ai)+ (a2m+2﹣ai
= (2m+1﹣2k)(a2m+1k﹣ak)+ (a2m+1﹣ai)+ (a2m+2﹣ai
= (2m+1﹣2k)(a2m+1k﹣ak)+(2m﹣1)a2m+1+(2m+1)a2m+2﹣2 ai
= (2m+3﹣2k)(a2m+3k﹣ak),
即T(A)< (2m+1﹣2k)(a2m2k﹣ak)=m2(b﹣a)
【解析】(Ⅰ)根据新定义即可求出答案,(Ⅱ)够造新数列B={d+a1 , d+a2 , …,d+an},根据新定义可得取d= 即可证明.(Ⅲ)利用数学归纳法即可证明.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网