题目内容

【题目】将3个男同学和3个女同学排成一列,若男同学甲与另外两个男同学不相邻,则不同的排法种数为 . (用具体的数字作答)

【答案】288
【解析】解:根据题意,分2种情况讨论: ①、3个男同学均不相邻,
将三名女同学全排列,有A33=6种排法,排好后有4个空位,
在4个空位中,任选3个,安排3个男同学,有A43=24种安排方法,
此时共有6×24=144种不同的排法;
②、另外两个男同学相邻,将这两个男同学看成一个整体,考虑2人的顺序,有A22=2种情况,
将三名女同学全排列,有A33=6种排法,排好后有4个空位,
在4个空位中,任选2个,安排甲和这2个男同学,有A42=12种安排方法,
此时共有2×6×12=144种不同的排法;
则共有144+144=288种不同的排法;
所以答案是:288.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网