题目内容
【题目】设数列{an}、{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于( )
A.0
B.37
C.100
D.﹣37
【答案】C
【解析】解:∵数列{an}、{bn}都是等差数列,
∴数列{an+bn}也是等差数列,
∵a1+b1=25+75=100,a2+b2=100,
∴数列{an+bn}的公差为0,数列为常数列,
∴a37+b37=100
故选:C.
【考点精析】掌握等差数列的性质是解答本题的根本,需要知道在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列.
练习册系列答案
相关题目