题目内容
【题目】已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴垂直.
(1)求的单调区间;
(2)设,对任意,证明:.
【答案】(1)的单调递增区间是,单调递减区间是;(2)证明见解析.
【解析】
试题分析:(1)求出,根据曲线在点处的切线与轴垂直即切线斜率为,求出的值,解即得函数的单调递增区间和递减区间;(2)由于,所以整理得,分别证明时,和,根据(1)可知:当时,由(1)知成立;当时,,,即证,构造函数,利用导数研究其在单调性,求出其在上的最大值即可证得,再构造函数,利用导数求出其最小值,根据不等式的性质即可得到要证明的结论.
试题解析:(1)因为,由已知得,∴.
所以,
设,则,在上恒成立,即在上是减函数,
由知,当时,从而,当时,从而.
综上可知,的单调递增区间是,单调递减区间是.
(2)因为,要证原式成立即证成立,
现证明:对任意恒成立,
当时,由(1)知成立;
当时,,且由(1)知,∴.
设,则,
当时,,当时,,所以当时,取得最大值. 所以,即时,.
综上所述,对任意.①
令,则恒成立,所以在上递增,
恒成立,即,即.②
当时,有;当时,由①②式,,
综上所述,时,成立,故原不等式成立
练习册系列答案
相关题目