题目内容
【题目】已知数列{an}满足:an≠0,a1= ,an﹣an+1=2anan+1 . (n∈N*).
(1)求证:{ }是等差数列,并求出an;
(2)证明:a1a2+a2a3+…+anan+1< .
【答案】
(1)证明:a1= ,an﹣an+1=2anan+1.可得
﹣ =2,则{ }是首项为3,公差为2的等差数列,
= +2(n﹣1)=3+2(n﹣1)=2n+1,
即有an=
(2)证明:a1a2+a2a3+…+anan+1= + +…+
= ( ﹣ + ﹣ +…+ ﹣ )
= ( ﹣ )= ﹣ <
【解析】(1)两边除以anan+1 , 由等差数列的定义和通项公式,即可得证,由等差数列的通项公式即可得到;(2)运用数列的求和方法:裂项相消求和,运用不等式的性质,即可得证.
【考点精析】认真审题,首先需要了解数列的前n项和(数列{an}的前n项和sn与通项an的关系),还要掌握数列的通项公式(如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式)的相关知识才是答题的关键.
【题目】电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方
图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(Ⅰ)根据已知条件完成下面的列联表,并据此资料,在犯错误的概率不超过的前提下,你是否有理由认为“体育迷”与性别有关?
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为.若每次抽取的结果是相互独立的,求的分布列,期望和方差.
附:
【题目】某单位招聘职工分为笔试和面试两个环节,将笔试成绩合格(满分100分,及格60分,精确到个位数)的应聘者进行统计,得到如下的频率分布表:
分组 | 频数 | 频率 |
[60,70] | 0.16 | |
(70,80] | 22 | |
(80,90] | 14 | 0.28 |
(90,100] | ||
合计 | 50 | 1 |
(Ⅰ)确定表中的值(直接写出结果,不必写过程)
(Ⅱ)面试规定,笔试成绩在80分(不含80分)以上者可以进入面试环节,面试时又要分两关,首先面试官依次提出4个问题供选手回答,并规定,答对2道题就终止回答,通过第一关可以进入下一关,如果前三题均没有答对,则不再回答第四题并且不能进入下一关,假定某选手获得面试资格的概率与答对每道题的概率相等.
求该选手答完3道题而通过第一关的概率;
记该选手在面试第一关中的答题个数为X,求X的分布列及数学期望.