题目内容
5.可以将椭圆$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{8}$=1变为圆x2+y2=4的伸缩变换为( )A. | $\left\{\begin{array}{l}{x′=\frac{2}{5}x}\\{y′=\frac{\sqrt{2}}{2}y}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x′=\frac{\sqrt{10}}{2}x}\\{y′=\sqrt{2}y}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x′=\frac{\sqrt{2}}{2}x}\\{y′=\frac{\sqrt{10}}{5}y}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x′=\frac{\sqrt{10}}{5}x}\\{y′=\frac{\sqrt{2}}{2}y}\end{array}\right.$ |
分析 令$\left\{\begin{array}{l}{x=\frac{\sqrt{10}}{2}{x}^{′}}\\{y=\sqrt{2}{y}^{′}}\end{array}\right.$代入,化简代入椭圆方程化简整理即可得出.
解答 解:由圆x2+y2=4化为$(\frac{x}{2})^{2}+(\frac{y}{2})^{2}$=1,
令$\left\{\begin{array}{l}{x=\frac{\sqrt{10}}{2}{x}^{′}}\\{y=\sqrt{2}{y}^{′}}\end{array}\right.$代入椭圆方程可得$\frac{({x}^{′})^{2}}{4}+\frac{({y}^{′})^{2}}{4}$=1,即(x′)2+(y′)2=4,
由$\left\{\begin{array}{l}{x=\frac{\sqrt{10}}{2}{x}^{′}}\\{y=\sqrt{2}{y}^{′}}\end{array}\right.$化为$\left\{\begin{array}{l}{{x}^{′}=\frac{\sqrt{10}}{5}x}\\{{y}^{′}=\frac{\sqrt{2}}{2}y}\end{array}\right.$.
故选:D.
点评 本题考查了椭圆化为圆的变换公式,考查了计算能力,属于基础题.
练习册系列答案
相关题目
10.下列说法中,错误的是( )
A. | 命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0” | |
B. | 对于命题p:?x∈R,使得x2+x+1<0,则¬p为:?x∈R,均有x2+x+1≥0 | |
C. | 若p∧q为假命题,则p,q均为假命题 | |
D. | “x>2”是“x2-3x+2>0”的充分不必要条件 |