题目内容

5.可以将椭圆$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{8}$=1变为圆x2+y2=4的伸缩变换为(  )
A.$\left\{\begin{array}{l}{x′=\frac{2}{5}x}\\{y′=\frac{\sqrt{2}}{2}y}\end{array}\right.$B.$\left\{\begin{array}{l}{x′=\frac{\sqrt{10}}{2}x}\\{y′=\sqrt{2}y}\end{array}\right.$C.$\left\{\begin{array}{l}{x′=\frac{\sqrt{2}}{2}x}\\{y′=\frac{\sqrt{10}}{5}y}\end{array}\right.$D.$\left\{\begin{array}{l}{x′=\frac{\sqrt{10}}{5}x}\\{y′=\frac{\sqrt{2}}{2}y}\end{array}\right.$

分析 令$\left\{\begin{array}{l}{x=\frac{\sqrt{10}}{2}{x}^{′}}\\{y=\sqrt{2}{y}^{′}}\end{array}\right.$代入,化简代入椭圆方程化简整理即可得出.

解答 解:由圆x2+y2=4化为$(\frac{x}{2})^{2}+(\frac{y}{2})^{2}$=1,
令$\left\{\begin{array}{l}{x=\frac{\sqrt{10}}{2}{x}^{′}}\\{y=\sqrt{2}{y}^{′}}\end{array}\right.$代入椭圆方程可得$\frac{({x}^{′})^{2}}{4}+\frac{({y}^{′})^{2}}{4}$=1,即(x′)2+(y′)2=4,
由$\left\{\begin{array}{l}{x=\frac{\sqrt{10}}{2}{x}^{′}}\\{y=\sqrt{2}{y}^{′}}\end{array}\right.$化为$\left\{\begin{array}{l}{{x}^{′}=\frac{\sqrt{10}}{5}x}\\{{y}^{′}=\frac{\sqrt{2}}{2}y}\end{array}\right.$.
故选:D.

点评 本题考查了椭圆化为圆的变换公式,考查了计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网