题目内容
20.已知x2+y2=2x+8(x,y∈R),则4x2+5y2的最大值为64.分析 由x2+y2=2x+8,可得x∈[-4,4],再由4x2+5y2=5x2+5y2-x2=-x2+10x+40,结合二次函数的图象和性质,得到答案.
解答 解:∵x2+y2=2x+8,表示以(1,0)点为圆心,以3为半径的圆,
∴x∈[-4,4]
∴4x2+5y2=5x2+5y2-x2=-x2+10x+40=-(x-5)2+65,
当且仅当x=4时,取最大值:64,
故答案为:64
点评 本题考查的知识点是圆的方程,二次函数的图象和性质,本题易忽略x的取值范围,而错解为65.
练习册系列答案
相关题目
11.若函数f(x)=$\frac{x}{\sqrt{1+{x}^{2}}}$,f(2)(x)=f[f(x)],f(3)(x)=f(f(f(x))),则f(99)(1)=$\frac{1}{10}$.
5.可以将椭圆$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{8}$=1变为圆x2+y2=4的伸缩变换为( )
A. | $\left\{\begin{array}{l}{x′=\frac{2}{5}x}\\{y′=\frac{\sqrt{2}}{2}y}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x′=\frac{\sqrt{10}}{2}x}\\{y′=\sqrt{2}y}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x′=\frac{\sqrt{2}}{2}x}\\{y′=\frac{\sqrt{10}}{5}y}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x′=\frac{\sqrt{10}}{5}x}\\{y′=\frac{\sqrt{2}}{2}y}\end{array}\right.$ |