题目内容
【题目】在对人们休闲方式的一次调查中,共调查120人,其中女性70人,男性50人.女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外30人主要的休闲方式是运动.
(1)请画出性别与休闲方式的列联表;
(2)能否在犯错误的概率不超过0.10的前提下,认为休闲方式与性别有关?
附:,
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)答案见解析.(2)能在犯错误的概率不超过0.10的前提下,认为休闲方式与性别有关.
【解析】
(1)根据题中所给的数据直接填表即可.
(2)计算可得,再对照表中数据分析即可.
(1)列联表如下:
休闲方式 性别 | 看电视 | 运动 | 总计 |
女性 | 40 | 30 | 70 |
男性 | 20 | 30 | 50 |
总计 | 60 | 60 | 120 |
(2)计算可得,
而,
所以能在犯错误的概率不超过0.10的前提下,认为休闲方式与性别有关.
练习册系列答案
相关题目
【题目】2020年初,由于疫情影响,开学延迟,为了不影响学生的学习,国务院、省市区教育行政部门倡导各校开展“停学不停课、停学不停教”,某校语文学科安排学生学习内容包含老师推送文本资料学习和视频资料学习两类,且这两类学习互不影响已知其积分规则如下:每阅读一篇文本资料积1分,每日上限积5分;观看视频1个积2分,每日上限积6分.经过抽样统计发现,文本资料学习积分的概率分布表如表1所示,视频资料学习积分的概率分布表如表2所示.
表1
文本学习积分 | 1 | 2 | 3 | 4 | 5 |
概率 |
表2
视频学习积分 | 2 | 4 | 6 |
概率 |
(1)现随机抽取1人了解学习情况,求其每日学习积分不低于9分的概率;
(2)现随机抽取3人了解学习情况,设积分不低于9分的人数为,求的分布列及数学期望.