题目内容
如图,三棱柱
中,
平面
,
,
, 点
在线段
上,且
,
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232227366815378.jpg)
(Ⅰ)求证:直线
与平面
不平行;
(Ⅱ)设平面
与平面
所成的锐二面角为
,若
,求
的长;
(Ⅲ)在(Ⅱ)的条件下,设平面
平面
,求直线
与
所成的角的余弦值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736088630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736119383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736135462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736275627.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736431646.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736447314.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736634356.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736650598.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736665655.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232227366815378.jpg)
(Ⅰ)求证:直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736712393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736135462.png)
(Ⅱ)设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736743496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736135462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736790284.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736806635.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736821354.png)
(Ⅲ)在(Ⅱ)的条件下,设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737024537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737040510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737055250.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736712393.png)
(Ⅰ)见解析 (Ⅱ)
.(Ⅲ)直线
与
所成的角的余弦值为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737242572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737055250.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736712393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737289708.png)
(I)本小题易用空间向量法解决,易求出平面ABC的法向量,然后证明向量DE与平面ABC的法向量的数量积不等于零即可.
(2)先求出平面
的一个法向量,然后
,可以求出此直棱柱的高.
(3)先找出平面平面
与平面
的交线.在平面
内,分别延长
,交于点
,连结
,则直线
为平面
与平面
的交线.
然后求出
的坐标,再根据
,求出直线
与
所成的角的余弦值.
依题意,可建立如图所示的空间直角坐标系
,设
,则
.2分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232227376793676.jpg)
(Ⅰ)证明:由
平面
可知
为平面
的一个法向量.
∴
.∴ 直线
与平面
不平行. 4分
(Ⅱ)设平面
的法向量为
,则
,
取
,则
,故
.6分
∴
,7分解得
.∴
.
(Ⅲ)在平面
内,分别延长
,交于点
,连结
,则直线
为平面
与平面
的交线.∵
,
,∴
.∴
,
∴
.········ 11分
由(Ⅱ)知,
,故
,
∴
.∴ 直线
与
所成的角的余弦值为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737289708.png)
(2)先求出平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736743496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232227373361278.png)
(3)先找出平面平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736743496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736135462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737383490.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737398525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737414301.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737445373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737445373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736743496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736135462.png)
然后求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737492896.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232227375231331.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737055250.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736712393.png)
依题意,可建立如图所示的空间直角坐标系
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737617518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737632470.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232227376482608.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232227376793676.jpg)
(Ⅰ)证明:由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736119383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736135462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737726612.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736135462.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232227377731440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736712393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736135462.png)
(Ⅱ)设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736743496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737851702.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232227378822701.png)
取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737898381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737913494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737944688.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232227379602054.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737976510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737242572.png)
(Ⅲ)在平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737383490.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737398525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737414301.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737445373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737445373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736743496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736135462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222738334559.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222738350769.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222738366824.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222738397647.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232227384121856.png)
由(Ⅱ)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737976510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232227384441258.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232227384751817.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737055250.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222736712393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222737289708.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目