ÌâÄ¿ÄÚÈÝ
18£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬ÒÑÖª¡ÏC=90¡ã£¬AC=BC=4£¬DÊÇABµÄÖе㣬µãE¡¢F·Ö±ðÔÚAC¡¢BC±ßÉÏÔ˶¯£¨µãE²»ÓëµãA¡¢CÖغϣ©£¬ÇÒ±£³ÖAE=CF£¬Á¬½ÓDE¡¢DF¡¢EF£®ÔÚ´ËÔ˶¯±ä»¯µÄ¹ý³ÌÖУ¬ÓÐÏÂÁнáÂÛ£º¢ÙËıßÐÎCEDFÓпÉÄܳÉΪÕý·½ÐΣ»¢Ú¡÷DFEÊǵÈÑüÖ±½ÇÈý½ÇÐΣ»¢ÛËıßÐÎCEDFµÄÃæ»ýÊǶ¨Öµ£»¢ÜµãCµ½Ï߶ÎEFµÄ×î´ó¾àÀëΪ$\sqrt{2}$£®ÆäÖÐÕýÈ·µÄ½áÂÛÊÇ£¨¡¡¡¡£©?
A£® | ¢Ù¢Ü | B£® | ¢Ú¢Û | C£® | ¢Ù¢Ú¢Ü | D£® | ¢Ù¢Ú¢Û¢Ü |
·ÖÎö ¢Ùµ±µãE£¬F·Ö±ðΪAC£¬CBµÄÖеãʱ£¬ËıßÐÎCEDFΪÕý·½ÐΣ¬¼´¿ÉÅжϳöÕýÎó£»
¢ÚÈçͼËùʾ£¬½¨Á¢Ö±½Ç×ø±êϵ£¬ÉèE£¨a£¬0£©£¬ÔòF£¨0£¬4-a£©£¬D£¨2£¬2£©£¬ÓÚÊÇ$\overrightarrow{DF}$=£¨-2£¬2-a£©£¬$\overrightarrow{DE}$=£¨a-2£¬-2£©£¬¼ÆËã$\overrightarrow{DF}•\overrightarrow{DE}$=0£¬¿ÉµÃ$\overrightarrow{DE}¡Í\overrightarrow{DF}$£¬ÓÖ$|\overrightarrow{DE}|$=$|\overrightarrow{DF}|$=$\sqrt{£¨a-2£©^{2}+4}$£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÛËıßÐÎCEDFµÄÃæ»ý=S¡÷ABC-S¡÷ADE-S¡÷BDF=$\frac{1}{2}¡Á{4}^{2}$-$\frac{1}{2}¡ÁAD¡ÁAEsin4{5}^{¡ã}$-$\frac{1}{2}¡ÁBD¡ÁBFsin4{5}^{¡ã}$£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÜÉèµãCµ½Ï߶ÎEFµÄ¾àÀëΪh£¬ÀûÓÃS¡÷CEF=$\frac{1}{2}CE•CF$=$\frac{1}{2}h•EF$£¬¿ÉµÃ$h=\frac{CE•CF}{\sqrt{C{E}^{2}+C{F}^{2}}}$£¬ÉèCE=x£¬ÔòCF=4-x£¬¿ÉµÃh=$\frac{4x-{x}^{2}}{\sqrt{2{x}^{2}-8x+16}}$£¬Áî4x-x2=t¡Ê£¨0£¬4]£¬Ôòh£¨x£©=g£¨t£©=$\frac{t}{\sqrt{16-2t}}$£¬g2£¨t£©=$\frac{{t}^{2}}{16-2t}$=f£¨t£©£¬ÀûÓõ¼ÊýÑо¿Æäµ¥µ÷ÐÔ¼«ÖµÓë×îÖµ£¬¼´¿ÉÅжϳöÕýÎó£®
½â´ð ½â£º¢Ùµ±µãE£¬F·Ö±ðΪAC£¬CBµÄÖеãʱ£¬ËıßÐÎCEDFΪÕý·½ÐΣ¬ÕýÈ·£»
¢ÚÈçͼËùʾ£¬½¨Á¢Ö±½Ç×ø±êϵ£¬ÉèE£¨a£¬0£©£¬ÔòF£¨0£¬4-a£©£¬D£¨2£¬2£©£¬ÓÚÊÇ$\overrightarrow{DF}$=£¨-2£¬2-a£©£¬$\overrightarrow{DE}$=£¨a-2£¬-2£©£¬
¡à$\overrightarrow{DF}•\overrightarrow{DE}$=-2£¨a-2£©-2£¨2-a£©=0£¬¡à$\overrightarrow{DE}¡Í\overrightarrow{DF}$£¬ÓÖ$|\overrightarrow{DE}|$=$|\overrightarrow{DF}|$=$\sqrt{£¨a-2£©^{2}+4}$£¬Òò´Ë¡÷DFE¿ÉÒÔÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬ÕýÈ·£»
¢ÛËıßÐÎCEDFµÄÃæ»ý=S¡÷ABC-S¡÷ADE-S¡÷BDF=$\frac{1}{2}¡Á{4}^{2}$-$\frac{1}{2}¡ÁAD¡ÁAEsin4{5}^{¡ã}$-$\frac{1}{2}¡ÁBD¡ÁBFsin4{5}^{¡ã}$=8-$\frac{\sqrt{2}}{2}£¨AE+BF£©$=$8-\frac{\sqrt{2}}{2}¡Á4$=8-2$\sqrt{2}$ÊǶ¨Öµ£¬Òò´ËÕýÈ·£»
¢ÜÉèµãCµ½Ï߶ÎEFµÄ¾àÀëΪh£¬¡ßS¡÷CEF=$\frac{1}{2}CE•CF$=$\frac{1}{2}h•EF$£¬¡à$h=\frac{CE•CF}{\sqrt{C{E}^{2}+C{F}^{2}}}$£¬ÉèCE=x£¬ÔòCF=4-x£¬¡àh=$\frac{x£¨4-x£©}{\sqrt{{x}^{2}+£¨4-x£©^{2}}}$=$\frac{4x-{x}^{2}}{\sqrt{2{x}^{2}-8x+16}}$£¬Áî4x-x2=t¡Ê£¨0£¬4]£¬Ôòh£¨x£©=g£¨t£©=$\frac{t}{\sqrt{16-2t}}$£¬g2£¨t£©=$\frac{{t}^{2}}{16-2t}$=f£¨t£©£¬f¡ä£¨t£©=$\frac{2t£¨16-2t£©-£¨-2£©{t}^{2}}{£¨16-2t£©^{2}}$=$\frac{2t£¨16-t£©}{£¨16-2t£©^{2}}$£¾0£¬¡àº¯Êýf£¨t£©ÔÚt¡Ê£¨0£¬4]Éϵ¥µ÷µÝÔö£¬¡àf£¨t£©max=f£¨4£©=$\frac{16}{16-8}$=2£¬
Òò´Ëg£¨t£©¼´hµÄ×î´óֵΪ$\sqrt{2}$£¬ÕýÈ·£®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²éÁËÏòÁ¿´¹Ö±ÓëÊýÁ¿»ýµÄ¹Øϵ¡¢µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊ¡¢Èý½ÇÐεÄÃæ»ý¼ÆË㹫ʽ¡¢ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¼«ÖµÓë×îÖµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | ͼÏóM¿ÉÓÉy=sin2xµÄͼÏóÏò×óƽÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»µÃµ½ | |
B£® | º¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚÊÇ4¦Ð | |
C£® | ͼÏóM¹ØÓÚÖ±Ïßx=$\frac{¦Ð}{3}$¶Ô³Æ | |
D£® | º¯Êýy=f£¨x£©ÔÚÇø¼ä$£¨-\frac{5¦Ð}{6}£¬\frac{¦Ð}{6}£©$ÉÏÊÇÔöº¯Êý |
A£® | -3 | B£® | -2 | C£® | -$\frac{3}{2}$ | D£® | -1 |
A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
A£® | [$\frac{3}{2}$£¬2£© | B£® | [$\frac{1}{4}$£¬2£© | C£® | [$\frac{3}{4}$£¬3] | D£® | [$\frac{3}{4}$£¬2£© |