题目内容
【题目】一项针对人们休闲方式的调查结果如下:受调查对象总计124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个的列联表;
(2)根据下列提供的独立检验临界值表,你最多能有多少把握认为性别与休闲方式有关系?
独立检验临界值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式: .
【答案】(1)见解析(2)在犯错误的概率不超过0.025的前提下认为“休闲方式与性别有关”.
【解析】试题分析: (1)根据共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动得到列联表;(2)根据列联表中所给的数据做出观测值,把观测值同临界值进行比较得到在犯错误的概率不超过0.025的前提下认为“休闲方式与性别有关”.
试题解析:(1)列联表如下:
看电视 | 运动 | 合计/人 | |
女性/人 | 43 | 27 | 70 |
男性/人 | 21 | 33 | 54 |
合计/人 | 64 | 60 | 124 |
(2)假设“休闲方式与性别无关”,
由公式算得K2=≈6.201,
比较P(K2≥5.024)≈0.025,
所以有理由认为假设“休闲方式与性别无关”是不合理的,即在犯错误的概率不超过0.025的前提下认为“休闲方式与性别有关”.
点睛: 变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2}.利用随机变量、独立性假设来确定是否一定有把握认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验.