题目内容
【题目】已知函数,,其中.
讨论函数与的图象的交点个数;
若函数与的图象无交点,设直线与的数和的图象分别交于点P,证明:.
【答案】(1)见解析(2)见证明
【解析】
原问题等价于求解方程根的个数,据此构造函数,分类讨论即可确定交点的个数;由可知,当函数与的图象无交点时,,据此构造函数证明题中的不等式即可.
函数与的图象交点个数即方程根的个数,
设,.
则在上单调递增,且.
当时,,则在上单调递减;
当时,,,则在上单调递增.
所以,当时,.
当,即时,函数无零点,即函数与的图象无交点;
当时,函数有一个零点,即函数与的图象有一个交点;
当时,又.
,所以在和上分别有一个零点.
所以,当时,有两个零点,即函数与的图象有两个交点.
综上所述:当时,函数与的图象的交点个数为0;
当时,函数与的图象的交点个数为1;
当时,函数与的图象的交点个数为2.
由可知,当函数与的图象无交点时,.
设,,由得,由得,
.
设,
先证明不等式,再证明,.
设则.
当时,,在上单调递增,
当时,,在上单调递减,
所以,即.
设则.
当时,,单调递减:
当时,,单调递增.
所以,即.
所以.
因为时,中等号成立,时,中等号成立,
而,所以等号不能同时成立.
所以.
所以.
【题目】每当《我心永恒》这首感人唯美的歌曲回荡在我们耳边时,便会想起电影《泰坦尼克号》中一暮暮感人画面,让我们明白了什么是人类的“真、善、美”.为了推动我市旅游发展和带动全市经济,更为了向外界传递遂宁人民的“真、善、美”.我市某地将按“泰坦尼克号”原型比例重新修建.为了了解该旅游开发在大众中的熟知度,随机从本市岁的人群中抽取了人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该旅游开发将在我市哪个地方建成?”,统计结果如下表所示:
组号 | 分组 | 回答正确的人数 | 回答正确的人数 占本组的频率 |
第组 | |||
第组 | |||
第组 | |||
第组 | |||
第组 |
(1)求出的值;
(2)从第组回答正确的人中用分层抽样的方法抽取人,求第组每组抽取的人数;
(3)在(2)中抽取的人中随机抽取人,求所抽取的人中恰好没有年龄在段的概率.
【题目】已知抛物线C:y2=2px(p>0)与圆无公共点,过抛物线C上一点M作圆D的两条切线,切点分别为E,F,当点M在抛物线C上运动时,直线EF都不通过的点构成一个区域,求这个区域的面积的取值范围.
【题目】为了让税收政策更好的为社会发展服务,国家在修订《中华人民共和国个人所得税法》之后,发布了《个人所得税专项附加扣除暂行办法》,明确“专项附加扣除”就是子女教育、继续教育大病医疗、住房贷款利息、住房租金赠养老人等费用,并公布了相应的定额扣除标准,决定自2019年1月1日起施行,某机关为了调查内部职员对新个税方案的满意程度与年龄的关系,通过问卷调查,整理数据得如下2×2列联表:
40岁及以下 | 40岁以上 | 合计 | |
基本满意 | 15 | 30 | 45 |
很满意 | 25 | 10 | 35 |
合计 | 40 | 40 | 80 |
(1)根据列联表,能否有99%的把握认为满意程度与年龄有关?
(2)为了帮助年龄在40岁以下的未购房的8名员工解决实际困难,该企业拟员工贡献积分(单位:分)给予相应的住房补贴(单位:元),现有两种补贴方案,方案甲:;方案乙:.已知这8名员工的贡献积分为2分,3分,6分,7分,7分,11分,12分,12分,将采用方案甲比采用方案乙获得更多补贴的员工记为“类员工”.为了解员工对补贴方案的认可度,现从这8名员工中随机抽取4名进行面谈,求恰好抽到3名“类员工”的概率。
附:,其中.
参考数据:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |