题目内容
【题目】如图,四边形ABCD内接于⊙O,过点A作⊙O的切线EP交CB的延长线于P,∠PAB=35°.
(1)若BC是⊙O的直径,求∠D的大小;
(2)若∠PAB=35°,求证: .
【答案】
(1)解:∵EP与⊙O相切于点A,∴∠ACB=∠PAB=35°,
又BC是⊙O的直径,∴∠ABC=55°.
∵四边形ABCD内接于⊙O,∴∠ABC+∠D=180°,
∴∠D=112°
(2)证明:∵∠DAE=35°,
∴∠ACD=∠PAB,∠D=∠PBA,
∴△ADC∽△ABP,
∴ = ,∠DBA=∠BDA,
∴DA=BA,∴DA2=DCBP,AP2=PCBP,
∴
【解析】(1)由弦切角定理得∠ACB=∠PAB=25°,从而∠ABC=65°,由此利用四边形ABCD内接于⊙O,能求出∠D.(2)由∠DAE=25°,∠ACD=∠PAB,∠D=∠PBA,从而△ADC∽△PBA,由此能证明DA2=DCBP,AP2=PCBP,即可证明结论.
练习册系列答案
相关题目