题目内容
【题目】如图,在四棱锥中,底面,底面为矩形,为的中点,且,,.
(1)求证:平面;
(2)若点为线段上一点,且,求四棱锥的体积.
【答案】(1)见解析 (2)6
【解析】
(1)连接交于点,得出点为的中点,利用中位线的性质得出,再利用直线与平面平行的判定定理可得出平面;
(2)过作交于,由平面,得出平面,可而出,结合,可证明出平面,可得出,并计算出,利用平行线的性质求出的长,再利用锥体的体积公式可计算出四棱锥的体积.
(1)连接交于,连接.
四边形为矩形,∴为中点.
又为中点,∴.
又平面,平面,
∴平面;
(2)过作交于.
∵平面,∴平面.
又平面,∴.
∵,,,平面,
∴平面.连接,则,
又是矩形,易证,而,,得,
由得,∴.
又矩形的面积为8,∴.
练习册系列答案
相关题目
【题目】2018年春季,世界各地相继出现流感疫情,这已经成为全球性的公共卫生问题.为了考察某种流感疫苗的效果,某实验室随机抽取100只健康小鼠进行试验,得到如下列联表:
感染 | 未感染 | 总计 | |
注射 | 10 | 40 | 50 |
未注射 | 20 | 30 | 50 |
总计 | 30 | 70 | 100 |
参照附表,在犯错误的概率最多不超过__________的前提下,可认为“注射疫苗”与“感染流感”有关系.
(参考公式:.)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】已知关于与有表格中的数据,且与线性相关,由最小二乘法得.
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)求与的线性回归方程;
(2)现有第二个线性模型:,且.若与(1)的线性模型比较,哪一个线性模型拟合效果比较好,请说明理由