题目内容
4.已知函数f(x)的定义域为[-1,4],部分对应值如表,x | -1 | 0 | 2 | 3 | 4 |
f(x) | 1 | 2 | 0 | 2 | 0 |
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根据导函数图象,画出原函数的草图,利用1<a<2,即可得到函数y=f(x)-a的零点的个数.
解答 解:根据导函数图象,可得2为函数的极小值点,函数y=f(x)的图象如图所示:
因为f(0)=f(3)=2,1<a<2,
所以函数y=f(x)-a的零点的个数为4个.
故选:D.
点评 本题主要考查导函数和原函数的单调性之间的关系.二者之间的关系是:导函数为正,原函数递增;导函数为负,原函数递减,本题属于中档题.
练习册系列答案
相关题目
17.如图,在棱长为2的正方体ABCD-A1B1C1D1内(含正方体表面)任取一点M,则$\overrightarrow{A{A}_{1}}$•$\overrightarrow{AM}$≥1的概率是( )
A. | $\frac{5}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
16.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为正方形,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为( )
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
13.以直角坐标系的原点为极点x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.则曲线C1:ρ2-2ρcosθ-1=0上的点到曲线C2:$\left\{\begin{array}{l}{x=3-t}\\{y=1+t}\end{array}\right.$(t为参数)上的点的最短距离为( )
A. | $2\sqrt{2}$ | B. | $\frac{{3\sqrt{2}}}{2}$ | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |