题目内容

【题目】幂函数f(x)=xn(n∈Z)具有性质f2(1)+f2(﹣1)=2[f(1)+f(﹣1)﹣1],判断函数f(x)的奇偶性.

【答案】解:由题意得:(1n2+((﹣1)n2=2[1n+(﹣1)n﹣1],2=2[1n+(﹣1)n﹣1]①, 当n为奇数时,①不成立,当n为偶数时,①恒成立,故n一定为偶数,
∴幂函数f(x)=xn(n∈Z)是个偶函数.

【解析】先化简题目中的等式,分n为奇数和n为偶数2种情况讨论,最后确定n一定为偶数,从而得出幂函数f(x)=xn(n∈Z)是个偶函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网