题目内容
【题目】已知| |=4,| |=3,(2 ﹣3 )(2 + )=61.
① 与 的夹角;
②求| + |和| ﹣ |.
【答案】解:①∵| |=4,| |=3,
∴(2 ﹣3 )(2 + )=4 ﹣4 ﹣3 =61,
∴64﹣4 ﹣27=61,
即﹣4 =24,
∴ =﹣6;
∴cosθ= = =﹣ ,
∴θ=120°;
②∵ =﹣6,
∴| + |=
=
= ;
| ﹣ |=
=
= .
【解析】(1)根据两向量的数量积公式可得出 与 的夹角,(2)由向量的求模运算后即可得出答案.
【考点精析】关于本题考查的数量积表示两个向量的夹角,需要了解设、都是非零向量,,,是与的夹角,则才能得出正确答案.
【题目】二手车经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如表的对应数据:
使用年数 | 2 | 4 | 6 | 8 | 10 |
售价 | 16 | 13 | 9.5 | 7 | 4.5 |
(1)试求y关于x的回归直线方程;(参考公式: = , =y﹣ )
(2)已知每辆该型号汽车的收购价格为w=0.01x3﹣0.09x2﹣1.45x+17.2万元,根据(1)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润L(x)最大?(利润=售价﹣收购价)
【题目】某厂拟生产甲、乙两种适销产品,每件产品甲的销售收入为3千元,每件产品乙的销售收入为4千元.这两种产品都需要在A,B两种不同的设备上加工,按工艺规定,一件产品甲和一件产品乙在各设备上需要加工工时如表所示:
设备 | A | B |
甲 | 2h | 1h |
乙 | 2h | 2h |
已知A,B两种设备每月有效使用台时数分别为400h、300h(一台设备工作一小时称为一台时).分别用x,y表示计划每月生产甲、乙产品的件数.
(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问每月分别生产甲、乙两种产品各多少件,可使每月的收入最大?并求出此最大收入.