题目内容
【题目】为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X表示学生的考核成绩,并规定X≥85为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图.
(1)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;
(2)从图中考核成绩满足X[70,79]的学生中任取3人,设Y表示这3人重成绩满足≤10的人数,求Y的分布列和数学期望.
【答案】(1)(2),分布列见解析
【解析】
(1)根据茎叶图得到成绩优秀的人数,然后根据古典概型概率公式求解即可.(2)根据题意先得到的所有可能取值,然后分别求出对应的概率,进而可得分布列和期望.
(1)设该名学生考核成绩优秀为事件,由茎叶图中的数据可以知在30名同学的成绩中,优秀的为:85,89,90,90,91,92,93,共有7名同学,
所以,
所以可估计这名学生考核优秀的概率为.
(2)由题意可得的所有可能取值为,
因为成绩的学生共有8人,其中满足的学生有人,
所以,
,
,
.
所以随机变量的分布列为
所以,
即数学期望为.
【题目】研究机构对某校学生往返校时间的统计资料表明:该校学生居住地到学校的距离(单位:千米)和学生花费在上学路上的时间(单位:分钟)有如下的统计资料:
到学校的距离(千米) | 1.8 | 2.6 | 3.1 | 4.3 | 5.5 | 6.1 |
花费的时间(分钟) | 17.8 | 19.6 | 27.5 | 31.3 | 36.0 | 43.2 |
如果统计资料表明与有线性相关关系,试求:
(1)判断与是否有很强的线性相关性?
(相关系数的绝对值大于0.75时,认为两个变量有很强的线性相关性,精确到0.01)
(2)求线性回归方程(精确到0.01);
(3)将分钟的时间数据称为美丽数据,现从这6个时间数据中任取2个,求抽取的2个数据全部为美丽数据的概率.
参考数据:,,,,
,
参考公式:,